Synthesis of 1,2-diferrocenyl-3-(diacylmethylidene)cyclopropenes and 1,1-diacyl-2,3-diferrocenyl-4-methylsulfanylbuta-1,3-dienes, their structures and electrochemical properties

Elena Klimova ${ }^{\text {a,* }}$, Tatiana Klimova Berestneva ${ }^{\text {a }}$, Simon Hernandez-Ortega ${ }^{\text {b }}$, Luis Ortiz-Frade ${ }^{\text {c }}$, Leon V. Backinowsky ${ }^{\text {d }}$, Marcos Martínez García ${ }^{\text {b }}$
${ }^{a}$ Universidad Nacional Autónoma de México, Facultad de Química, Cd. Universitaria, Coyoacán, C.P. 04510, México D.F., Mexico
${ }^{\mathrm{b}}$ Universidad Nacional Autónoma de México, Instituto de Química, Cd. Universitaria, Coyoacán, C.P. 04510, México D.F., Mexico
${ }^{\text {c Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. Parque Tecnológico Querétaro, C.P. 76703, Querétaro, Mexico }}$
${ }^{\mathrm{d}}$ N.D. Zelinsky Institute of Organic Chemisrty, Russian Academy of Sciences, 47 Leninsky Prosp., 117913 Moscow, Russian Federation

Received 16 November 2007; received in revised form 9 January 2008; accepted 9 January 2008
Available online 16 January 2008

Abstract

2,3-Diferrocenyl-1-morpholinocyclopropenylium tetrafluoroborate reacts with 1,3-diketones in the presence of triethylamine to give 3-diacylmethylidene-1,2-diferrocenylcyclopropenes (8a-d). Under similar conditions, 2,3-diferrocenyl-1-methylsulfanylcyclopropenylium iodide affords 8a-c ($\sim 25-30 \%$) and 1,1-diacyl-2,3-diferrocenyl-4-methylsulfanylbuta-1,3-dienes ($\mathbf{1 0 a} \mathbf{- c})(\sim 50-60 \%)$. The structures of the products obtained were established based on the data from ${ }^{1} \mathrm{H}$ (1D NOE) and ${ }^{13} \mathrm{C}$ NMR spectra and X-ray diffraction analysis. Electrochemical properties of several (diacylmethylidene)diferrocenylcyclopropenes ($\mathbf{8 a} \mathbf{- c}$) and 1,1-diacyl-2,3-diferrocenyl-4-methylsulfanylb-uta-1,3-dienes (10a-c) are studied.

© 2008 Elsevier B.V. All rights reserved.
Keywords: Diferrocenyl(morpholino)cyclopropenylium tetrafluoroborate; Diacylmethylidene(diferrocenyl)cyclopropenes; Diferrocenyl(methylsulfanyl) cyclopropenylium iodide; Diacyl(diferrocenyl)butadienes; Electrochemistry

1. Introduction

Diarylcyclopropenylium salts containing dialkylamino and alkylsulfanyl groups in the small ring have successfully been employed in organic synthesis as three-carbon-atom building blocks [1]. The reactions of this kind of compounds 1a,b with carbon- and nitrogen-centered nucleophiles were shown [1-7] to produce selectively five- and six-membered carbo- and heterocycles.

Thus dialkylamino(diphenyl)cyclopropenylium tetrafluoroborates (1a) react with β-dicarbonyl compounds in the presence of triethylamine to yield 3-dialkylaminocyclo-penta-2,4-dienol derivatives 2a (Scheme 1). Under analo-

[^0]gous conditions, alkylsulfanyl(diphenyl)cyclopropenylium iodides afford cyclopenta-2,4-dienol derivatives (2b) with the alkylsulfanyl-substituent in position 2 of the five-membered ring [5] (Scheme 1).

Presumably [5], these reactions involve the initial attack of the nucleophile (3) on the carbon atom of the threemembered ring linked to a phenyl substituent to form tetrasubstituted cyclopropene intermediates $\mathbf{4 a}$ or $\mathbf{4 b}$, which undergo ring extension (see Scheme 1).

The behavior of diferrocenyl analogs [8-10] of dialkyla-mino- or alkylsulfanyl-cyclopropenylium salts in reactions with 1,3-diketones has not been studied so far. In the present work, we studied the reactions of 2,3-diferrocenyl-1morpholinocyclopropenylium tetrafluoroborate (5a) and 2,3-diferrocenyl-1-methylsulfanylcyclopropenylium iodide (5c) with 1,3-diketones and investigated some chemical and electrochemical properties of the reaction products.

$E t_{3} \mathrm{~N} \downarrow$

4b

2b 0
$\mathrm{R}=\mathrm{CH}_{3}$, OEt
$\mathrm{X}=\mathrm{NR}_{2}{ }^{1}, \mathrm{Y}^{-}=\mathrm{BF}^{-}{ }_{4}(\mathrm{a})$
$X=S R^{2}, Y^{-}=I^{-}(b)$
Scheme 1.

2. Results and discussion

The starting compounds, 2,3-diferrocenyl-1-morpholinocyclopropenylium tetrafluoroborate (5a) and 2,3-diferr-ocenyl-1-methylsulfanylcyclopropenylium iodide (5c), were prepared [11] from 2,3-diferrocenylcyclopropenone (6) according to Scheme 2.

We found that compound 5 a reacts with β-diketones (acetylacetone, dibenzoylmethane, dipivaloylmethane, and benzoylacetone ($\mathbf{7 a - d}$)) in the presence of triethylamine to afford high yields of 1,2-diferrocenyl-3-(diacylmethylidene)cyclopropenes (8a-d) (Scheme 3).

The cyclopropenes $\mathbf{8 a - d}$ were isolated by column chromatography on alumina and recrystallized from ethanol.

Their structures were established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, mass spectrometry, and elemental analysis.

The formation of cyclopropenes $\mathbf{8 a - d}$ can obviously be rationalized as the initial attack of a nucleophilic reagent on the $\mathrm{C}(1)$ atom of the cyclopropenylium cation resulting in cyclopropene intermediates ($\mathbf{9 a - d}$) followed by elimination of morpholine (Scheme 4).

We found further that, unlike diferrocenyl(morpholino)cyclopropenylium tetrafluoroborate (5a), diferrocenyl(methylsulfanyl)cyclopropenylium iodide ($\mathbf{5 c}$) reacts with 1,3 -diketones $7 \mathbf{7 a - c}$ to give two products, viz., (diacyImethylidene) diferrocenylcyclopropenes ($\mathbf{8 a - c}$) ($\sim 25-30 \%$) and 1,1-diacyl-2,3-diferrocenyl-4-methylsulfanylbuta-1,3dienes ($10 \mathrm{a}-\mathrm{c}$) ($\sim 50-60 \%$) separated by chromatography on alumina (Scheme 5).

The structures of compounds $\mathbf{1 0 a - c}$ were established by mass spectrometry, ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR (including 1D NOE) spectroscopy, and elemental analysis. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 10a-c contain signals for the protons of the acyl substituents, of two ferrocenyl fragments, a singlet of protons of the methylsulfanyl group, and a singlet of the olefinic proton. The ${ }^{13} \mathrm{C}$ NMR spectra of compounds 10a-c contain signals for the carbon atoms of two carbonyl groups, of two ferrocenyl fragments with two signals for $\mathrm{C}_{\text {ipso }}$, and the corresponding number of signals for other carbon atoms of the molecules. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10c suggests that this was isolated as a single geometric isomer; its absolute configuration has not been established. The position of a proton at the double bond adjacent to the MeS group in compounds 10a-c was confirmed by NOE experiments: irradiation of the methyl protons gave a response at the vinylic proton.

A putative mechanism for the formation of compounds 10a-c is presented in Scheme 6.

The results obtained in the present study demonstrate that the nucleophilic attacks on the cation $\mathbf{5 c}$ with a methylsulfanyl substituent are directed, contrary to the cation 5a, on both the $\mathrm{C}(1)$ atom of the small ring and the $\mathrm{C}(2)$ atom. In the former case, cyclopropenes ($\mathbf{8} \mathbf{a}-\mathbf{c}$) are formed according to Scheme 4. In the case of the attack on the $\mathrm{C}(2)$ atom linked to a ferrocenyl substituent, 3-ferrocenylcyclopropenes ($\mathbf{1 1 a - c}$) are formed as unstable intermediates [12-14]. These undergo spontaneous opening of the threemembered ring to yield vinylcarbenes (12a-c). The transformations of vinylcarbenes ($\mathbf{1 2 a - c}$) with intramolecular proton shift affords ultimately the linear products 10a-c. The intramolecular character of the transformation of analogous vinylcarbenes was proved earlier for the reaction of the cation 5 c with diethyl $\left[\mathrm{D}_{2}\right]$ malonate [15].

The formation of diacylmethylidenecyclopropenes (8a-d) as sole reaction products of morpholino(diferrocenyl)cyclopropenylium tetrafluoroborate (5a) with 1,3-diketones should be stressed. This seems to be related to different distribution of the electron density deficiency in the three-membered rings of the amino 5 a and thio 5 c derivatives: $\mathrm{N}-\mathrm{C}_{1}{ }^{\delta+}>\mathrm{Fc}-\mathrm{C}_{2}{ }^{\delta+}$ for $\mathbf{5 a}, \mathrm{Fc}-\mathrm{C}_{2}{ }^{\delta+}>\mathrm{S}-\mathrm{C}_{1}{ }^{\delta+}$ for 5 c .

Scheme 3.

Scheme 4.

The structure of compound $\mathbf{8 a}$ was confirmed by X-ray diffraction analysis. X-ray analysis of a single crystal prepared by crystallization from dichloromethane proved its
structure as 1,2-diferrocenyl-3-(diacetylmethylidene)cyclopropene. The general view of the molecule $\mathbf{8 a}$ is shown in Fig. 1, the main geometrical parameters are given in Table 1.

Scheme 5.

Scheme 6.

Fig. 1. Molecular structure of $\mathbf{8 a}$.
The central fragment of the molecule $\mathbf{8 a}$ is a flat threemembered ring. Data from the X-ray analysis show that the $\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{C}(3)$ bonds in the cyclopropene

Table 1
Selected bond lengths and bond angles for 8a

Bond lengths, $r(\AA)$			Bond angles, $\omega\left(^{\circ}\right)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.409(4)$	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	$57.3(2)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.404(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$61.1(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.348(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	$61.6(2)$
$\mathrm{C}(1)-\mathrm{C}(28)$	$1.377(4)$	$\mathrm{C}(1)-\mathrm{C}(28)-\mathrm{C}(26)$	$115.3(3)$
$\mathrm{C}(24)-\mathrm{C}(28)$	$1.455(4)$	$\mathrm{C}(28)-\mathrm{C}(1)-\mathrm{C}(2)$	$155.3(3)$
$\mathrm{C}(26)-\mathrm{C}(28)$	$1.466(40)$	$\mathrm{C}(28)-\mathrm{C}(1)-\mathrm{C}(3)$	$147.4(3)$
$\mathrm{C}(24)-\mathrm{O}(2)$	$1.213(4)$	$\mathrm{C}(1)-\mathrm{C}(28)-\mathrm{C}(24)$	$122.3(3)$
$\mathrm{C}(26)-\mathrm{O}(1)$	$1.223(4)$	$\mathrm{C}(26)-\mathrm{C}(28)-\mathrm{C}(24)$	$122.3(3)$

ring are somewhat shorter $(r=1.409(4)$ and $1.404(4) \AA$, respectively) than the standard values of $1.483 \AA[16]$ and the $\mathrm{C}(1)-\mathrm{C}(28), \mathrm{C}(24)-\mathrm{C}(28)$ and $\mathrm{C}(26)-\mathrm{C}(28)$ bonds are somewhat longer $[r=1.377(4), 1.455(4)$ and $1.466(4) \AA$, respectively] than the standard values of 1.34 and $1.42 \AA$ [17], indicating a small contribution of the dipolar form and the pseudoaromatic character $[18,19]$ of compound $\mathbf{8 a}$, as well as of compounds $\mathbf{8 b}, \mathbf{c}$.

The lengths of the $\mathrm{C}-\mathrm{Fe}$ and $\mathrm{C}-\mathrm{C}$ bonds in the ferrocenyl substituents as well as the geometrical parameters of the ferrocene sandwiches are close to the standard values [12].

The pseudoaromatic character of 3-diacylmethylidene-1,2-diferrocenylcyclopropenes ($\mathbf{8 a - c}$) are manifested in
theirs stability towards thermolysis $\left(\sim 200^{\circ} \mathrm{C}\right)$ and upon the action of acids $(\mathrm{HCl}, \mathrm{AcOH})$. These compounds do not form Diels-Alder adducts with dienes such as cyclo-hexa-1,3-diene, 1,3-diphenylisobenzofuran, tetraphenylcyclopentadiene.

Treatment of the diacylmethylidene(diferrocenyl)cyclopropenes ($\mathbf{8 a - c}$) with tetrafluoroboric acid diethyl etherate affords crystalline salts (13a-c), which can be stored in a dry inert atmosphere (Scheme 7).

The structure of the salts 13a-c was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data. The signals for the protons of the cyclopentadienyl rings of ferrocene in the ${ }^{1} \mathrm{H}$ NMR spectrum of the salts 13a-c are noticeably shifted to lower fields $\left(\delta_{\mathrm{C}_{5} \mathrm{H}_{5}}=4.37 ; 4.45 ; 4.26\right.$ and 4.41 ppm ; $\delta_{\mathrm{C}_{5} \mathrm{H}_{4}}=4.85,5.36 ; 4.91,5.37 ; 4.49,4.63,4.98,5.59 \mathrm{ppm}$, respectively) relative to those of the original cyclopropenes $(\mathbf{8 a}-\mathbf{c})\left(\delta_{\mathrm{C}_{5} \mathrm{H}_{5}}=4.24 ; 4.23 ; 4.15\right.$ and $4.27 \mathrm{ppm} ; \delta_{\mathrm{C}_{5} \mathrm{H}_{4}}=4.71$, $5.20 ; 4.65,5.08 ; 4.32,4.48,4.72,5.37 \mathrm{ppm})$. In addition, the ${ }^{1} \mathrm{H}$ NMR spectra of compounds 13a-c contain signals for the protons of the acyl substituents and broad signals for the one proton $\left(\delta_{\mathrm{H}}=5.43,5.66\right.$ and 5.74 ppm , respec-
tively). Data from the ${ }^{13} \mathrm{C}$ NMR spectrum corroborate the structures of the salts 13a-c. They each contained three, four, or five signals for carbon atoms bearing no hydrogen atoms, one ($\mathbf{1 3 a}, \mathbf{b}$) or two (13c) signals for the carbon atoms of groups $-\mathrm{C}-\mathrm{O} \cdots$, one or two carbon atoms $\mathrm{C}_{i p s o} \mathrm{Fc}$ of the ferrocene units. The number of signals for the $\mathrm{C}_{5} \mathrm{H}_{5}$, $\mathrm{C}_{5} \mathrm{H}_{4-}, \mathrm{C}_{6} \mathrm{H}_{5}$ and Me groups and their chemical shifts correspond completely to the structures 13a-c.

Unlike aryl- and ferrocenylcyclopropenyl cations, which give 3 -substituted cyclopropenes upon the action of nucleophiles [19], the cations 13a-c undergo deprotonation upon treatment with bases (N, N-dimethylaniline, pyridine) with the formation of the starting diacylmethylidene(diferrocenyl)cyclopropenes 8a-c (Scheme 7).

The compounds $\mathbf{8 a - c}$ are ferrocene-containing α, β enediones, which could be expected to react with hydrazines giving derivatives of the diferrocenylcyclopropenylid-ene-4,5-dihydropyrazoles analogous to these obtained from ferrocenyl- α, β-enones [20-22]. However, our studies demonstrate that compounds $\mathbf{8 a - c}$ do not form heterocycles of the type \mathbf{A} (Scheme 8). The only reaction products

Scheme 7.

Scheme 8.
are monohydrazones 14a-c and 15a obtained in high yields (Scheme 8).

The structures of compounds $\mathbf{1 4 a - c}$ and $\mathbf{1 5 a}$ were established based on their ${ }^{1} \mathrm{H}$ (including 1D NOE) and ${ }^{13} \mathrm{C}$ NMR spectroscopic and elemental analysis data.

3. Electrochemistry

Fig. 2 shows the voltammetry of compound $\mathbf{8 a}$ in acetonitrile solution containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}{ }^{-}$. When the potential scan was initiated in positive direction and when the cycle was completed two oxidation signals $\left(\mathbf{I}_{a}\right.$ and $\left.\mathbf{I I}_{a}\right)$ and two reduction signals ($\mathbf{I}_{\mathbf{c}}$ and $\mathbf{I I}_{c}$) were observed. The obtained values of anodic and cathodic peak potentials $E_{\mathrm{pa}}(\mathbf{I})$ and $E_{\mathrm{pc}}(\mathbf{I})$ for signal \mathbf{I}_{a} and \mathbf{I}_{c} were $0.280 \mathrm{~V} / \mathrm{Fc}-$ Fc^{+}and $0.221 \mathrm{~V} / \mathrm{Fc}-\mathrm{Fc}^{+}$, respectively. The ΔE_{p} was 0.059 V and independent of the scan rate $\left(0.1-1 \mathrm{~V} \mathrm{~s}^{-1}\right)$. A reversible electrochemical behavior is presented [23]. The anodic and cathodic peak potential values for signals $\mathbf{I I}_{\mathrm{a}}$ and $\mathbf{I I}_{\mathrm{c}} E_{\mathrm{pa}}(\mathbf{I I})$ and $E_{\mathrm{pc}}(\mathbf{I I})$ are 0.398 and $0.338 \mathrm{~V} / \mathrm{Fc}-$ Fc^{+}, respectively. The ΔE_{p} was also independent of the scan rate $\left(0.1-1 \mathrm{~V} \mathrm{~s}^{-1}\right)$. It can be suggested a two-step reversible oxidation of ferrocene moieties for process is \mathbf{I} and II.

The formal electrode potential was evaluated with the half sum of the anodic and cathodic peak potentials, $E^{\prime \prime}=\left(E_{\mathrm{pa}}+E_{\mathrm{pc}}\right)$. The values for processes I and II, were $E^{0 \prime}(\mathbf{I})=0.250 \mathrm{~V} / \mathrm{Fc}-\mathrm{Fc}^{+} \quad$ and $\quad E^{0 \prime}(\mathbf{I I})=0.368 \mathrm{~V} / \mathrm{Fc}-\mathrm{Fc}^{+}$. The value of $\Delta E^{0 \prime}(\mathbf{I I}-\mathbf{I})$ for processes I and II was 0.118 V and the corresponding value of comproportionation constant $K_{\text {com }}$ was 100 [23,24]. The electrochemical response of compounds $\mathbf{8 b}$ and $\mathbf{8 c}$ is very similar than the presented in compound 8a.

Cyclic voltammetry experiment of compound $\mathbf{1 0 b}$ also indicates a two consecutive electron transfer mechanism EE, Fig. 3.

Fig. 2. Cyclic voltammogram for a $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of compound $8 \mathbf{a}$ in acetonitrile in the presence of $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}{ }^{-}$. The scan potential was initiated from $E_{\text {ocp }}$ to positive direction. Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. The working electrode used was platinum.

Fig. 3. Cyclic voltammogram for a $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of compound $\mathbf{1 0 b}$ in acetonitrile in the presence of $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}{ }^{-}$. The scan potential was initiated from $E_{\text {ocp }}$ to positive direction. Scan rate $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. The working electrode used was platinum.

Table 2
Formal electrode potentials $E^{0}(\mathrm{I}), E^{0}(\mathrm{II})$ and $\Delta E^{0}(\mathrm{II}-\mathrm{I})$, and constant $K_{\text {com }}$ for compounds 8a-c and 10a-c

Compound	$E^{\circ}(\mathrm{I})$	$E^{\circ}(\mathrm{II})$	$\Delta E^{\circ}(\mathrm{II}-\mathrm{I})$	$K_{\text {com }}$
$\mathbf{8 a}$	0.250	0.368	0.118	100
$\mathbf{8 b}$	0.249	0.362	0.113	82
$\mathbf{8 c}$	0.250	0.362	0.112	80
$\mathbf{1 0 a}$	0.006	0.241	0.235	9617
$\mathbf{1 0 b}$	0.007	0.240	0.233	8895
$\mathbf{1 0 c}$	0.011	0.239	0.228	7318
$E^{0 \prime}=\left(E_{\mathrm{pa}}+E_{\mathrm{pc}}\right) / 2$, reported vs. ferrocene in $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}{ }^{-}$-aceto-				
nitrile. Scan rate $0.10 \mathrm{~V} \mathrm{~s}^{-1}$.				

A summary of the obtained values of $E^{0 \prime}(\mathrm{I}), E^{0 \prime}(\mathrm{II})$ and $K_{\text {com }}$ for all the compounds studied by cyclic voltammetry is presented in Table 2.

The calculated values of $K_{\text {com }}$ for all compounds suggests that the electron charge is slightly delocalized in the mixed valence state generated electrochemically, according to the Robin-Day classification (class II) [24,25]. The similar values of $K_{\text {com }}$ for compounds $\mathbf{8 a}$ and $\mathbf{8 b}, \mathbf{8 c}$ suggest no effect of the substituent in the mixed valence state.

The values obtained for compounds 10a-c suggest no differences in the electronic communication between ferrocene moieties in these compounds. The largest values of $K_{\text {com }}$ for compounds 10a-c compared with 8a-c can be attributed to the presence of a sulfur atom close to one ferrocene moiety. The electronic communication in compounds 10a-c cannot be neglected but probably with a minor effect compared with the presence of sulfur, which increases the value of $\Delta E^{\circ}(\mathrm{II}-\mathrm{I})$.

4. Conclusion

Thus, the results of the present study support our previous conclusion [8-10], that, depending on whether the nucleophile attacks $\mathrm{C}(1)$ or $\mathrm{C}(2)$ of the cations $5 \mathbf{a}$ or $5 \mathbf{c}$,
the initially formed intermediates 9a-d or 11a-c (see Schemes 4 and 6) usually form the products that retain the original three-membered ring or undergo $\mathrm{C}-\mathrm{C}$ bond cleavage to give ring-opened products. Diferrocenyl(morpholino)cyclopropenylium tetrafluoroborate (5a) reacts with 1,3-diketones to afford solely the products with retention of the three-membered ring - 3-diacylmethylidene-1,2-diferrocenylcyclopropenes ($\mathbf{8 a}-\mathbf{d}$), while diferrocenyl(methylsulfanyl)cyclopropenylium iodide (5c) affords preferentially linear products (1,1-diacyl-2,3-diferrocenyl-4-methylsulfanylbuta-1,3-dienes (10a-c)) resulted from the opening of the small ring. This behavior of 5 c is substantially different from its morpholino analog 5a. No cyclic products similar to cyclopentadienols $\mathbf{2 a}$ and $\mathbf{2 b}$ were observed in the reactions of compounds $\mathbf{5 a}$ and $\mathbf{5 c}$ with 1,3-diketones, which distinguishes diferrocenylcyclopropenylium salts from their diaryl-substituted analogs.

At the same time, it is known [26] that the presence of ferrocenyl substituents in molecules of organic compounds imparts new properties to these compounds that are absent, as a rule, in their alkyl/aryl analogs. This statement seems to concern also diferrocenylcyclopropenylium salts, which may prove to be appropriate synthons for the preparation of various classes of functionalized compounds with ferrocenyl substituents in molecules, of substances with valuable properties such as electrical conductivity, nonlinear optical effects, pharmacological activity, magnetic behavior, thermal stability, etc.

5. Experimental

All the solvents were dried according to the standard procedures and were freshly distilled before use. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{8 a - d}$ and $\mathbf{1 0 a}-\mathbf{c}$ were recorded on a Unity Inova Varian spectrometer (300 and 75 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) of solns in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. Chemical shifts are given in ppm and J values in Hz . The IR spectra of samples prepared as KBr pellets were measured on a Specord IR-75 instrument. The mass spectrum were obtained on a VarianMAT CH-6 instrument (EI, 70 eV). An elemental analysis System GmbH was used for elemental analyses. Columns chromatography was carried out on alumina (Brockmann activity III).

The unit cell parameters and the X-ray diffraction intensities were recorded on a Bruker Smart Apex CCD area detector $/ \omega$ diffractometer. The crystallographic data, the experimental conditions, and corrections are given in Table 3. The structure of compound 8a was solved by direct method (shelxs-97 [27]) and refined using fullmatrix least-squares on F^{2}.

All electrochemical measurements were performed in acetonitrile solution containing 0.1 M tetra- N-butylammonium tetrafluoroborate (${ }^{t} \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{BF}_{4}{ }^{-}$). A potentiostat/galvanostat EG\&G PAR model 263A controlled by a PC software was used. A three-electrode array was employed. A platinum disk was used as working electrode, and a plat-

Table 3
Crystal data and structure refinement parameters for compound $\mathbf{8 a}$

Data	8 a
Molecular formula	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{Fe}_{2} \mathrm{O}_{2}$
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	504.17
Temperature (K)	291(2)
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
$a(\AA)$	10.6648(6)
b (\AA)	11.0139(6)
$c(\mathrm{~A})$	18.3080(10)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	94.7870(10)
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	2143.0(2)
Z	4
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{mm}^{-3}\right)$	1.563
Absorption coefficient (mm^{-1})	1.378
$F(000)$	1040
Radiation, λ (\AA)	Mo K $\alpha, 0.71073$
Monochromator	Graphite
θ range (${ }^{\circ}$)	2.16-25.00
Reflections collected	17171
Reflections independent	3779
$R_{\text {int }}$	0.0606
Final R indices $[I>2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0444 \\ & w R_{2}=0.0849 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0617 \\ & w R_{2}=0.0908 \end{aligned}$
Refinable parameters	291
Goodness-of-fit	1.000
Refinement method	Full-matrix-least-squares on F^{2}
Minimum/maximum residual electron density $\left(\mathrm{e} \AA^{-3}\right)$	-0.275/0.389

inum wire as counter-electrode. A pseudo reference electrode of silver wire immersed in a 0.1 M tetra- N butylammonium chloride $\left(\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}\right)$in acetonitrile was also employed. All solutions were bubbled with nitrogen prior each measurement. In all experiments, a $2.0 \times$ $10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of each compound in supporting electrolyte was used. All voltammograms were initiated from open circuit potential ($E_{\text {ocp }}$) and the scan potential was obtained in both positive and negative directions. All potentials were reported versus the couple $\mathrm{Fc} / \mathrm{Fc}^{+}$according to IUPAC convention [28].

The following reagents were purchased from Aldrich: ferrocene, 98%; aluminum chloride, 99.99%; tetrachlorocyclopropene, 98%; triethyloxonium tetrafluoroborate, 1.0 M solution in dichloromethane; morpholine, $99+\%$; sodium hydrosulfide hydrate $\mathrm{NaHS} \cdot x \mathrm{H}_{2} \mathrm{O}$; triethylamine, $99+\%$; 2,4-pentanedione, $99+\%$; dibenzoylmethane, 98%; 1-benzoylacetone, 99%; 2,2,6,6-tetramethyl-3,5-heptanedione, $98+\%$; iodomethane, 99.5%; hydrazine monohydrate, 98%; methylhydrazine, 98%. Tetrafluoroboric acid etherate, $50-52 \%$, was purchased from Alfa AESAR.

2,3-Diferrocenylcyclopropenone (6) was obtained from the ferrocene and tetrachlorocyclopropene in the presence of AlCl_{3} according to the standard procedure [29]. Ethoxy(diferrocenyl)cyclopropenylium tetrafluoroborate (5) was obtained from the 2,3-diferrocenylcyclopropenone (6)
in the presence of triethyloxonium tetrafluoroborate (1.0 M solution in dichloromethane) [8]. Differocenyl(morpholino)cyclopropenylium tetrafluoroborate (5a) was obtained from ethoxy(diferrocenyl)cyclopropenylium tetrafluoroborate and morpholine in dichloromethane [8,9]. 2,3-Diferrocenylcyclopropenethione ($\mathbf{5 b}$) was obtained by treating ethanolic differocenyl(morpholino)cyclopropenylium tetrafluoroborate [10] with an aqueous solution of NaSH [10], yield 91%, m.p. 208-209 ${ }^{\circ}$ C. 2,3-Diferrocenyl(methylsulfanyl)cyclopropenylium iodide ($\mathbf{5 c}$) was obtained from the 2,3-diferrocenylcyclopropenethione and iodomethane [10].

5.1. Reaction of diferrocenyl(morpholino) cyclopropenylium tetrafluoroborate ($5 \boldsymbol{a}$) with β-diketones ($7 \boldsymbol{a}-\boldsymbol{d}$)

β-Diketones $7 \mathrm{a}-\mathrm{d}(6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{ml})$ were added with stirring in a mixture of salt $5 \mathbf{5}(1.75 \mathrm{~g}, 3 \mathrm{mmol})$ in dry benzene $(50 \mathrm{ml})$. After stirring for 6 h at ambient temperature, the volatiles were removed in vacuo; chromatography of the residue on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (hexane-ether, 10:1) gave compounds 8a-d.

3-Diacetylmethylidene-1,2-diferrocenylcyclopropene (8a), yield $1.07 \mathrm{~g}(71 \%)$, orange crystals, m.p. $168-169^{\circ} \mathrm{C}$. IR (KBr): $v=486,574,661,730,818,948,1001,1027,1057$, $1105,1171,1268,1291,1331,1356,1392,1452,1479$, 1510, 1549, 1594, 1649, 1709, 1851, 2920, 2955, $3086 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR: $\delta 2.59\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 4.25(10 \mathrm{H}, \mathrm{s}$, $\left.2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.71\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.20\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 30.61\left(2 \mathrm{CH}_{3}\right), 64.61(\mathrm{C}), 70.42\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 72.53$, $73.00\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), \quad 100.99, \quad 105.08\left(2 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right), \quad 139.34(\mathrm{C})$, 140.89 (2C), 191.30, 195.65 (2C=O). Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{Fe}_{2} \mathrm{O}_{2}$: C, 66.70; $\mathrm{H}, 4.80 ; \mathrm{Fe}$, 22.15. Found: C, $66.49 ; \mathrm{H}, 4.91 ; \mathrm{Fe}, 21.97 \%$. MS: $m / z 504[\mathrm{M}]^{+}$.

3-Dibenzoylmethylidene-1,2-diferrocenylcyclopropene $(\mathbf{8 b})$, yield $1.29 \mathrm{~g}(68 \%)$, orange powder, m.p. 299-301 ${ }^{\circ} \mathrm{C}$. IR (KBr): $v=416,477,531,587,632,698,724,754,813$, 946, 999, 1025, 1080, 1226, 1325, 1381, 1417, 1460, 1480, 1527, 1549, 1594, 1652, 1712, 1839, 2991, $3057 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 4.23\left(10 \mathrm{H}, \mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.65\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.08$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.15-7.24\left(6 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.61-7.65(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 64.73(\mathrm{C}), 70.25\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 72.73$, $73.11\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right)$, 94.15, $101.51\left(2 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right)$, 127.79, 127.87, 128.18, 128.82, 130.51, $131.53\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 138.48,138.93$, 139.46 (3C), 142.04 (2C), 184.77, 195.03 (2C=O). Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{O}_{2}$: C, $72.64 ; \mathrm{H}, 4.49 ; \mathrm{Fe}, 17.78$. Found: C, 72.73 ; H, 4.32; Fe, 17.91\%. MS: $m / z 628[\mathrm{M}]^{+}$.

3-Acetyl(benzoyl)methylidene-1,2-diferrocenylcyclopropene (8 c), yield $1.19 \mathrm{~g}(70 \%)$, orange powder, m.p. 206$208^{\circ} \mathrm{C}$. IR (KBr): $v=412,488,552,631,697,746,821$, 946, 989, 1000, 1027, 1048, 1109, 1173, 1237, 1290, 1331, $1381,1406,1453,1522,1594,1638,1679,1700,1823$, 2904, $3056 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.15$ $\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.27\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.37(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 7.39-7.52\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.77-7.80(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right){ }^{13} \mathrm{C}$ NMR: $\delta 30.04\left(\mathrm{CH}_{3}\right), 64.05(\mathrm{C}), 70.07,70.24$ $\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 71.70,72.71,73.08,73.17\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 99.84,102.90$
$\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right)$, 128.55, 129.26, $131.45\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 137.45,138.70$, 140.10, 142.13 (4C), 186.20, 195.32 ($2 \mathrm{C}=\mathrm{O}$). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{Fe}_{2} \mathrm{O}_{2}$: C, 70.00; H, 4.63; Fe, 19.73. Found: C, $69.84 ; \mathrm{H}, 4.80 ; \mathrm{Fe}, 19.59 \%$. MS: $m / z 566[\mathrm{M}]^{+}$.

3-Dipivaloylmethylidene-1,2-diferrocenylcyclopropene $(8 d)$, yield $1.28 \mathrm{~g}(72 \%)$, orange powder, m.p. $238-239^{\circ} \mathrm{C}$. IR (KBr): $v=414,465,542,580,626,698,729,753,854$, 952, 999, 1003, 1032, 1057, 1100, 1174, 1221, 1266, 1321, $1354,1443,1462,1574,1653,1679,1711,1843,2955$, $3087 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.07\left(18 \mathrm{H}, \mathrm{s}, 6 \mathrm{CH}_{3}\right), 4.20(10 \mathrm{H}$, $\left.\mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.73\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 27.84\left(6 \mathrm{CH}_{3}\right), 44.59$ (2C), 64.48 (C), 70.31 $\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 72.21,72.93\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 99.87,101.70\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right)$, 139.31(C), 140.83 (2C), 190.32, 195.04 (2C=O). Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{Fe}_{2} \mathrm{O}_{2}$: C, 69.40; H, 6.17; Fe, 19.00. Found: C, 69.52; H, 6.04; Fe, 18.87\%. MS: $m / z 588[\mathrm{M}]^{+}$.

5.2. Reaction of diferrocenyl(methylsulfanyl)cyclopropenylium iodide ($\mathbf{5 c}$) with β-diketones ($7 \boldsymbol{a}-\mathbf{c}$)

This was carried out analogously using salt $5 \mathrm{c}(1.74 \mathrm{~g}$, $3.0 \mathrm{mmol}), \beta$-diketones ($7 \mathbf{a}-\mathrm{c}$) $(5 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{ml})$ and benzene (50 ml). The reaction mixture was worked up as described above, subsequent chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (hexane-diethyl ether, 4:1) gave compounds 8a-c and 10a-c.

1,1-Diacetyl-2,3-diferrocenyl-4-methylthio-1,3-butadiene (10a), yield $0.90 \mathrm{~g}(54 \%)$, orange crystals, m.p. $182-183^{\circ} \mathrm{C}$. IR (KBr): v 764, 807, 887, 971, 1018, 1047, 1079, 1121, 1147, 1228, 1285, 1380, 1421, 1442, 1614, 1661, 1691, 1813, 2926, 2987, $3095 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.22(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 4.09(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.24\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.33(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.34\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.61$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.54(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=)$. ${ }^{13} \mathrm{C}$ NMR: $\delta 16.49\left(\mathrm{CH}_{3} \mathrm{~S}\right), 29.85,30.59\left(2 \mathrm{CH}_{3}\right), 70.16$, $70.54\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 68.70,69.05,69.33,70.63\left(1 \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.00$, $70.75\left(1 \mathrm{C}_{5} \mathrm{H}_{4}\right), 83.33,85.33\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right), 126.12(\mathrm{CH}=)$, 133.19, 138.20, 155.80 (3C), 197.69, $200.34(2 \mathrm{C}=\mathrm{O})$. Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 63.07; H, 5.11; Fe, 20.23; S, 5.79. Found: C, 63.18; H, 5.012; Fe, 20.37; S, 5.64\%. MS: $\mathrm{m} / \mathrm{z} 552[\mathrm{M}]^{+}$.

Compound 8a, yield $0.31 \mathrm{~g}(20 \%)$, orange crystals, m.p. $168-169{ }^{\circ} \mathrm{C}$. MS: $m / z 504[\mathrm{M}]^{+}$.

1,1-Dibenzoyl-2,3-diferrocenyl-4-methylthio-1,3-butadiene ($\mathbf{1 0 b}$), yield $1.24 \mathrm{~g}(61 \%)$, orange crystals, m.p. 314 $316^{\circ} \mathrm{C}$. IR (KBr): v 772, 821, 892, 948, 987, 1007, 1024, 1053, 1080, 1124, 1147, 1231, 1289, 1386, 1431, 1447, 1634, 1668, 1696, 1811, 2928, 2979, $3058 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 4.11\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.28(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.38$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.06(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=), 7.10-7.93\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 16.02$ $\left(\mathrm{CH}_{3} \mathrm{~S}\right), 69.80,70.19\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 68.05,68.30,69.27,69.64$, 69.74, 69.87, 70.63, $71.48\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 84.18,85.58\left(2 \mathrm{C}_{i p s} \mathrm{Fc}\right)$, $121.48(\mathrm{CH}=), 127.76,128.03,128.09,129.70,131.82$,
$132.93\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 128.82,135.95,138.15,139.11,158.08$ (5C), 188.48, $192.50(2 \mathrm{C}=\mathrm{O})$. Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{32^{-}}$ $\mathrm{Fe}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 69.25$; H, 4.77; Fe, 16.52; S, 4.73. Found: C, 69.34; H, 4.89; Fe, 16.39; S, 4.95\%. MS: m/z $676[\mathrm{M}]^{+}$.

Compound $\mathbf{8 b}$, yield $0.34 \mathrm{~g}(18 \%)$, orange powder, m.p. 298-300 ${ }^{\circ} \mathrm{C}$. MS: $m / z 628[\mathrm{M}]^{+}$.

1-Acetyl-1-benzoyl-2,3-diferrocenyl-4-methylthio-1,3butadiene ($\mathbf{1 0 c}$), yield $1.05 \mathrm{~g}(57 \%)$, orange crystals, m.p. $211-212^{\circ} \mathrm{C}$. IR (KBr): v 769, 819, 890, 946, 991, 1004, 1022, 1051, 1078, 1125, 1147, 1228, 1283, 1377, 1430, $1444,1635,1663,1691,1802,2929,2969,3041 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~S}\right), 3.89(5 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.31\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.15\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.21$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 7.30-7.35(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) \cdot{ }^{13} \mathrm{C}$ NMR: $\delta 16.26\left(\mathrm{CH}_{3} \mathrm{~S}\right), 70.34,70.57\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 68.21$, $68.34,69.35,69.53,69.78,69.79,70.60,71.42\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right)$, 83.26, $85.32\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right), 120.96(\mathrm{CH}=)$, 128.34, 129.38, $131.79\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.88,136.06,139.03,154.12$ (4C), 192.67, $198.84(2 \mathrm{C}=\mathrm{O})$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Fe}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 66.48; H, 4.92; Fe, 18.18; S, 5.21. Found: C, 66.63; H, 5.08; Fe, 18.3; S, 5.29\%. MS: $m / z 614[\mathrm{M}]^{+}$.

Compound $8 \mathbf{8 c}$, yield $0.37 \mathrm{~g}(22 \%)$, orange powder, m.p. 206-207 ${ }^{\circ} \mathrm{C}$. MS: $m / z 566[\mathrm{M}]^{+}$.
5.3. The action of tetrafluoroboric acid diethyl etherate on 3-diacylmethylidene-1,2-diferrocenylcyclopropenes (8a-c)

Tetrafluoroboric acid diethyl etherate $(0.5 \mathrm{ml})$ was added dropwise with stirring at $20^{\circ} \mathrm{C}$ in an atmosphere of dry nitrogen to a solution of compounds $\mathbf{8 a}-\mathbf{c}$ $(0.5 \mathrm{mmol})$ in dry dichloromethane $(30 \mathrm{ml})$. The mixture was stirred for 1 h at $20^{\circ} \mathrm{C}$ and then dry diethyl ether $(150 \mathrm{ml})$ was added. The crystals that formed were filtered off, washed on a filter with several portions of dry diethyl ether, and then dried in a vacuum desiccator over CaCl_{2}. The yield of tetrafluoroborates (13a-c) were $80-87 \%$, brown crystals.

Tetrafluoroborate (13a), yield 0.24 g (81%), m.p. ca. $237{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.67\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{3}\right), 4.37$ $\left(10 \mathrm{H}, \mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.36(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 5.43(1 \mathrm{H}, \mathrm{bs}) .{ }^{13} \mathrm{C}$ NMR: $\delta 31.06\left(2 \mathrm{CH}_{3}\right), 65.47$ $(\mathrm{C}), 70.82\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 73.21,73.70\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 109.03\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right)$, 142.41(2C), 149,02 (C), $168.47(2 \mathrm{C}=\mathrm{O} \cdots 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{BF}_{4} \mathrm{Fe}_{2} \mathrm{O}_{2}$: C, $56.80 ; \mathrm{H}, 4.26$; B 1.83; F, 12.84; Fe, 18.87. Found: C, 56.62; H, 4.31; F, 12.98; Fe, 18.73\%.

Tetrafluoroborate ($\mathbf{1 3 b}$), yield $0.31 \mathrm{~g}(87 \%)$, m.p. ca. $261{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR: $\delta 4.45\left(10 \mathrm{H}, \mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.91$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.66(1 \mathrm{H}, \mathrm{bs}), 7.34$ $7.51\left(6 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.76-7.89\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 66.52(\mathrm{C}), 71.04\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 72.98,73.76\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 109.43$ $\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right), 128.03,128.16,128.45,128.91,131.19,133.37$ $\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right), 139.61,139.72,139.93$ (3C), 144.87(2C), 174.14 $(2 \mathrm{C}=\mathrm{O} \cdots 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{BF}_{4} \mathrm{Fe}_{2} \mathrm{O}_{2}: \mathrm{C}, 63.73$; H, 4.08; B 1.51; F, 10.61; Fe, 15.60. Found: C, 63.56; H, 4.11; F, 10.72; Fe, 15.43\%.

Tetrafluoroborate $\mathbf{1 3 c}$, yield 0.27 g (84%), m.p. ca. $224{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR: $\delta 4.26\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.41$ $\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.74(1 \mathrm{H}, \mathrm{bs})$, 7.47-7.71 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 27.64\left(\mathrm{CH}_{3}\right), 66.43$ (C), 70.79, $71.38\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 71.92,73.12,73.56,73.89$ $\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 108.03,111.15\left(2 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right), 129.42,129.69,132.83$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), \quad 138.81, \quad 139.64,142.16,144.06$ (4C), 171.02 $(2 \mathrm{C}=\mathrm{O} \cdots 1 \mathrm{H})$. Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{BF}_{4} \mathrm{Fe}_{2} \mathrm{O}_{2}$: C, $60.60 ; \mathrm{H}, 4.16 ;$ B $1.65 ; \mathrm{F}, 11.62 ; \mathrm{Fe}, 17.08$. Found: C, 60.72; H, 4.06; F, 11.51; Fe, 16.93\%.

5.4. Reaction of 3-diacylmethylidene-1,2diferrocenylcyclopropenes (8a-c) with hydrazines (16a,b)

A solution of compounds $\mathbf{8 a - c}(0.5 \mathrm{mmol})$ and hydrazine hydrate or methylhydrazine $(1.5 \mathrm{ml})$ in ethanol $(20 \mathrm{ml})$ was stirred for 3 h at $20^{\circ} \mathrm{C}$. The reaction mixture was evaporated in vacuo, and residue was chromatographed $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$; hexane/ether, $\left.4: 1\right)$ to give hydrazones $14 a-c$ and $15 a-c$.

Hydrazone 14 a , yield $0.16 \mathrm{~g}(62 \%)$, orange powder, p.m. $218-219^{\circ} \mathrm{C}$. IR (KBr): v 495, 555, 691, 820, 879, 920, 958, $1001,1025,1081,1106,1159,1234,1269,1332,1355,1373$, $1389,1412,1446,1518,1584,1672,1703,1725,2889,2924$, 3090, $3430 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.54(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.97\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right), 4.14\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.22(5 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.51$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 64.90 ; \mathrm{H}, 5.06 ; \mathrm{Fe}, 21.55$; N, 5.40. Found: C, 64.78; H, 4.98; Fe, 21.64; N, 5.17\%. MS: $m / z 518[\mathrm{M}]^{+}$.

Hydrazone 14b, yield $0.20 \mathrm{~g}(60 \%)$, orange powder, p.m. $305-307{ }^{\circ} \mathrm{C}$. IR (KBr): v 492, 561, 690, 819, 864, 926, 963 , 1001, 1022, 1085, 1105, 1157, 1242, 1267, 1334, 1357, 1384, $1412,1448,1521,1588,1643,1664,1700,1723,2887,2918$, 3087, $3425 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 4.04\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right), 4.21(5 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.29\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.18(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.20-$ $7.56\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, 71.05 ; H, 4.71; Fe, 17.39; N, 4.36. Found: C, 70.96; H, 4.83; Fe, 17.48; N, 4.28\%. MS: $m / z 642[\mathrm{M}]^{+}$.

Hydrazone $14 \mathbf{c}$, yield $0.18 \mathrm{~g}(63 \%)$, orange powder, p.m. $227-228^{\circ} \mathrm{C}$. IR (KBr): v 489, 557, 689, 821, 863, 924, 962, 1002, 1021, 1082, 1103, 1155, 1241, 1264, 1336, 1356, 1383, 1412, 1446, 1520, 1587, 1640, 1663, 1703, 1720, 2883, 2921, 3090, $3430 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.40(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.88\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right), 4.00\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.20(5 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.48$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 7.23-7.62(5 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{5}$). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 68.30$; $\mathrm{H}, 4.86$; $\mathrm{Fe}, 19.25$; N, 4.83. Found: C, 68.42; H, 4.93; Fe, 19.32; N, 4.75\%. MS: $m / z 580[\mathrm{M}]^{+}$.

Hydrazone 15a, yield $0.17 \mathrm{~g}(62 \%)$, orange powder, p.m. $207-209^{\circ} \mathrm{C}$. IR (KBr): v 491, 557, 691, 818, 880, 921, 959, 1001, 1022, 1079, 1104, 1161, 1234, 1267, 1333, 1355, 1374, 1386, 1410, 1447, 1521, 1585, 1671, 1705, 1721, 2880, 2920, 3087, $3424 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.44(3 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3,59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.17(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.09(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.28\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.30(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}$: C, 65.43; H, 5.30; Fe, 21.00; N, 5.26. Found: C, 65.29; H, 5.41; Fe, 21.10; N, 5.32\%. MS: $m / z 532[\mathrm{M}]^{+}$.

6. Supplementary material

CCDC 665728 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

This work was supported by the DGAPA-UNAM (Mexico, Grant IN 207606). Thanks are due to E.A. Vázquez López and Juan Manuel Martìnez Mendoza for their technical assistance.

References

[1] K. Kamatsu, T. Kitagawa, Chem. Rev. 103 (2003) 1371.
[2] E.A. Chandross, G. Smolinsky, Tetrahedron Lett. (1960) 19.
[3] T. Eicher, D. Lerch, Tetrahedron Lett. 21 (1980) 3751.
[4] S. Yoneda, H. Hirai, Z. Yoshida, Heterocycles 15 (1981) 865.
[5] H. Yoshida, Y. Takahashi, H. Kinoshida, S. Ukishima, T. Ogata, K. Matsumoto, Bull. Chem. Soc. Jpn. 64 (1991) 3565.
[6] H. Yoshida, F. Utsumi, H. Suzuki, S. Ito, S. Sakashita, T. Ogata, K. Matsumoto, Bull. Chem. Soc. Jpn. 65 (1992) 698.
[7] Z. Yoshida, H. Hirai, S. Miki, S. Yoneda, Tetrahedron 45 (1989) 3217.
[8] E.I. Klimova, T. Klimova Berestneva, S. Hernández Ortega, D. Méndez Iturbide, A. García Marquez, M. Martínez García, J. Organomet. Chem. 690 (2005) 3333.
[9] T. Klimova Berestneva, M. Martínez García, L. Ortiz-Frade, S. Hernandez Ortega, A.R. Toscano, E. Klimova, J. Organomet. Chem. 691 (2006) 2872.
[10] T. Klimova Berestneva, E.I. Klimova, A.R. Toscano, C. Alvarez Toledano, S. Hernández Ortega, M. Martínez García, Eur. J. Org. Chem. (2005) 4406.
[11] E.I. Klimova, M. Martínez García, T. Klimova, J.M. Méndez Stivalet, S. Hernandez Ortega, L. Ruíz Ramirez, J. Organomet. Chem. 659 (2002) 56.
[12] V.N. Postnov, E.I. Klimova, A.N. Pushin, N.N. Meleshonkova, Metalloorg. Khim. 5 (1992) 564.
[13] E.I. Klimova, T. Klimova, S. Hernandez Ortega, R.M. Esquivelzeta, L. Ruíz Ramirez, M. Martínez García, J. Organomet. Chem. 689 (2004) 2395.
[14] I. Agranat, E. Aharon-Shalom, J. Am. Chem. Soc. 35 (1975) 3829.
[15] E.I. Klimova, M. Martínez García, T. Klimova Berestneva, C. Alvarez Toledano, R.A. Toscano, L.V. Backinowsky, Eur. J. Org. Chem. (2006) 4755.
[16] C.H. Chang, R.F. Porter, S.H. Bauer, J. Am. Chem. Soc. 92 (1970) 5313.
[17] L.E. Sutton (Ed.), Tables of Interatomic Distances and Configuration in Molecules and Ions, The Chemical Society, London, 1965.
[18] K. Komatsu, T. Kitagawa, Chem. Rev. 103 (2003) 1371.
[19] A.J. Fry, P.S. Jain, R.L. Krieger, J. Organomet. Chem. 214 (1981) 381.
[20] Kh.M. Hassan, M.M. Aly, G.M. El-Nagkar, J. Chem. Tech. Biotechnol. 29 (1979) 515.
[21] A.N. Nesmeyanov, V.N. Postnov, A.M. Baran, V.A. Sazonova, Izv. Akad. Nauk SSSR. Ser. Khim. (1981) 222 [Bull. Acad. Sci. USSR. Div. Chem. Sci. 30 (1981) (Engl. Transl.)].
[22] M.A. El-Maghraby, Kh. M. Hassan, J. Indian Chem. Soc. 53 (1976) 1030.
[23] A. J Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley and Sons, NY, 1980.
[24] P. Zanello, Inorganic Electrochemistry, Theory, Practice and Application, The Royal Society of Chemistry, Cambridge, UK, 2003.
[25] M.B. Robinson, P. Day, Inorg. Chem. Radiochem. 10 (1967) 247.
[26] A. Togni, R.L. Halterman, Metallocenes, 2, VCH, Weinheim, 1998; A. Togni, T. Hayashi (Eds.), Ferrocenes, VCH, Weinheim, 1995, pp. 497-530.
[27] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
[28] G. Gritzner, J. Küta, Pure Appl. Chem. 4 (1984) 461.
[29] E.I. Klimova, T. Klimova Berestneva, A. Cinquantini, M. Corsini, P. Zanello, A.R. Toscano, S. Hernández Ortega, M. Martínez García, Org. Biomol.Chem. 1 (2003) 4458.

[^0]: * Corresponding author. Tel./fax: +525556225371.

 E-mail address: klimova@servidor.unam.mx (E. Klimova).

